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RESTORATION OF THE SHAPE OF ANALOG SIGNALS
BY DISCRETE READINGS

V.P. Yevdokimov and L.I. Kolesnikov

i. Formulation of the Problem /3*

In the transmission of messages by systems with time separa-

tion of channels, continuous signals are subjected to time

discretization. The resulting discrete regular sequence of read-

ings makes it possible to restore the shape of the transmitted

signal at the point of reception with a certain error that depends

on the frequency of interrogation, the shape and width of the

signal spectrum, and the method of restoration. In the following

analysis, it is assumed that the transducer and distortion noise

in the transmission channel is low and can be neglected.

Let us write the restoration error at each instant of time:

E(t) = x(t) - x (t)
r

x(t) is the true signal, and

xr (t) is the restored signal.

The criteria for estimating the difference in the shape of
the true and the restored signals can vary:

1) The root mean square error of the restoration of the shape
at any point between the discrete readings; and

2) The probability that for a certain point between readings

the restoration error does not exceed a specified value.

In this study, the following main problems are solved: /4

*Numbers in the margin indicate pagination in the foreign text.
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1) the error of restoring the shape of signals is calculated

using different correlation functions, with variation in the

interrogation frequency and in the weighting function of the

restoring filter; and

2) the results of computations are compared to arrive at

recommendations for selecting the method of restoring signals,

that is, an evaluation of the utility of greater complexity in

the restoring filter in order to reduce errors.

The calculation in the investigation was made on the basis

of the first criterion.

2. Signal Models and Methods of Restoring Shape

Let us examine signals that are steady random processes with

specified correlation (spectral) functions. It is useful to

select for these signals a single parameter providing for the

possibility of comparing the results when the interrogation

frequency is varied. We will use as this parameter the interval

of correlation of the process, which we will define as TK = (1/2)Fef,
where Fef is the effective width of the signal spectrum. Let

us define the generalized interrogation frequency as equal to the

ratio of the interrogation frequency to the doubled effective

width of the spectrum and indicating the number of interrogation

points in the correlation interval of the process:

F0 TK
2 Fef TO

Let us consider as signal mddels the following processes,

exhibiting the following correlation functions and power spectra:

11 White noise passed through a single RC filter: /5
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2) White noise passed through two series-connected

identical RC filters:

R A(z-/o +/r, -  " 4_00r

3) White noise passed through three series-connected

RC filters:

0 o ( 2+~ c

4) White noise passed through a filter with a gaussian

frequency characteristic (the limiting characteristic in the

series connection of a large number of RC filters):

R(r) e2'e-'  ("

5) White noise passed through a filter with a square-wave

frequency characteristic with a cut-off frequency F = Fef:

We will assume that the restoration of the signal shape based

on discrete readings is made with an interpolating line filter with

a finite storage, whose weighting function is W(t):

N

, (e) x(,,P-F) Wk,.7. ,0

where m is the number of interpolation nodes, /6

M = 2N is the total number of interpolation nodes,

TO is the time between interrogations, and

c is the fraction of the time interval between interrogations,

O . < 1.

Let us examine the following methods of restoring the signal

between adjoining readings:
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1) Stepwise restoration:

a) without shift -- the horizontal line of the estimate

is drawn to the right from each sample for the time

TO: and

b) with a shift of T0 /2 -- the horizontal line of the

estimate is drawn to the right and left of each

sample for the time T0 /2.

2) Piecewise-linear restoration by joining neighboring

readings with straight lines.

3) Restoration by a finite set of functions of the form

sin x.
x

4) Optimal linear restoration by a physically unrealizable

filter, using for the restoration an infinite number of samplings

on both sides of the interpolation interval.

3. Criterion of the Root-Mean-Square Error of Restoration

The root-mean-square error of shape restoration for each time

instant between readings can be calculated by the following

formula [1]:

E(R) - R(o). Z R o]W[ -c) Ti 
-Nf

A r N

where m and 1 are the numbers of the interpolation nodes involved /7

in restoration.

We will calculate the error in percentages of the scale of

signal change ±3UC6 a):
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The interpolation error takes on a maximum in the middle

of the interval between reading for all kinds of interpolation,
except for stepwise interpolation without shift, that is, when

e = 0.5 (for stepwise interpolation without shift, for E = 1).

The weighting functions of the restoring filters for these

restoration methods are of the following form:

1) Stepwise restoration (M = 1, m = 0):

W(C) = 0

2) Piecewise-linear restoration (M = 2, m = 0, 1):

- C T M=f

3) Restoration by the functions sin x (the number of nodes

M is a variable; restoration is carried out with a filter that is
matched with the interrogation frequency F0 = 2 Fef):

f n I - sin 77m-6)

The determination of the error for the optimal line interpola-
tion (averaged over all e within the interval between readings)
was made using the following formula, obtained in [21):

where SMw) is the energy spectrum of the restored process, and

90=LZ S-iJ is the energy spectrum of the discrete random

process, consisting of readings following at a frequency w0.
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4. Criterion of the Probability of Maximum Restoration Error

Use of this criterion is facilitated for normal random

processes.

Since line filters are used for the restoration of the signal

shape, the restoration error at each time instant e is a random

variable with normal distribution of probabilities and with

a dispersion defined by the formula presented for E2 (E).

Accordingly, the probability that at each point of the

interval between the readings the error does not exceed a specified

value can be easily calculatedby using the tables of the normal

distribution of probabilities.

5. Results of Calculations and Conclusions

The results of calculating the maximum root-mean-square

normalized error of the restoration of signals using different

correlation functions are given in the tables. /9

Table 1 contains the errors of stepwise restoration. The

errors prove to be significant in magnitude for any signal model

even at high interrogation frequencies. Therefore the use of this

restoration method appears disadvantageous.

Table 2 and Fig. 1 present the errors for piecewise-linear

restoration. The errors prove to be much smaller, and the

advantage with respect to stepwise restoration increases with

increase in the interrogation frequency.

When the signal spectrum is changed from model 1 to model 5,
an increasing suppression of the high-frequency "tails" in the

spectrum occurs. Thus, increasing complexity in the filter

shaping the signal spectrum leads to a reduction in the errors

for any interrogation frequencies.
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Restoration using the functions sin x makes it possible,
x

without changing the weighting function of the filter, to involve

a different number of nodes in the interpolation process. The

results of calculating the errors when the number of nodes was

varied from 20 to, 200 are given in Table 3. The dependence of

the errors on N is shown in Fig. 2. It is interesting to note

that for the first three signal models, at the interrogation

frequencies considered no appreciable reduction in the errors

was observed with an increase in the number of nodes participating

in the restoration. Since as N * - there is a limiting nonzero

restoration error, it can be concluded that there is a fairly

rapid convergence of the series with the functions sin x . This
x

implies that for restoration with the functions sin x in practice
x

it is not advantageous to use more than 10 - 20 interpolation nodes.

If we consider the change in the errors with increase in the

interrogation frequency and with constant node number as in Fig. 3,

we can note that regardless of the signal model an increase in /10

the interrogation frequency beyond some value leads to a constant

error identical in magnitude.

A comparison of piecewise-linear restoration and the restora-

tion using the functions sin x can be made from Figs. 4 and 5.
x

The errors with optimal linear, piecewise-linear restoration,

and restoration using the functions sin x , averaged over all e
x

values in the interval between readings, are given in Fig. 6.

The comparison shows that all the way up to the shape of the

spectrum determined by the forming 3 x RC filter, it is not

advantageous to increase the complexity of the restoring filters,

since the use of piecewise-linear restoration provides virtually

the same error values as optimal linear restoration. Only for

the gaussian shape of the signal spectrum are the errors of

optimal linear restoration smaller compared with those under
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piecewise-linear restoration, where the difference increases with

greater interrogation frequencies and for smaller errors. When

there are increased requirements and higher precision, this

difference in the error can be regarded as significant. In

this case, restoration with the functions sin x significantly
x

reduces this error down to some interrogation frequency, which

depends on the number of interpolation nodes used.

Interestingly, for some unknown signal model, but belonging

to the class under study, restoration with the functions sin x
x

leads to errors that are practically the same as the errors for

optimal linear restoration.

This also suggests the conclusion that there is no practical

advantage in the analysis and use of the optimal linear restora-

tion with a finite number of interpolation nodes.

In practice, the small difference between the errors yielded /11

by piecewise-linear restoration compared with more complex methods

of restoration leads to the conclusion that the predominant use

of piecewise-linear restoration of the signal shape between

readings is advantageous.



TABLE 1. STEPWISE RESTORATION.

Kind of-- fTin of Cor-
Restoration' 1 5 10 20 50 100 relation Function

Without shift 22 13.5 10 725 4.7 35.55

With shift 9,6 10j 7.25 5.16 5.35 2.53

Without shift .22.5 10.3 5.8 3.1 I,5 0.7

With shift 18.2 5.8 .1 1.6 0.7 0.33 4 4

Without shift 22.7 9.4 5 2. 6 1 0.5 U

With shift '18 5 2,6 1.3 0.5 026
Without:shift 2J 8 4 2. 084/0./2 0,5

With shift 4/ 4.I 2.1 1 0.4/2 021 'Q5

Without shift 23.6 6 3 5 . 6 0.6 0. 3
With shift 14.21 3 1.6 0.8 0.15 .16 -

TABLE 2. LINEAR RESTORATION.

Form of-Zf - -5 -20510

Correlatio & 2 3 5 o o so o
Func .on-

RC'-filte 15.2 I/.8 9.8 7. 9 S.5 3.7 2.3 1,67

2xR'.fi l- 3 8.02 5. 17 2.77 1. 09 0.4 / 0.;1 01/

xA-Y er  13 .91 6.82 3.88 1.72 0.5 o 1 // .o23 0.006

filIter 5,01 85 2.35 0.88 0.23 0.o05i oo90oo.2

Sfilter 7.9 2.22 1. 0 a3 7 0.09 4023 o0036 o



TABLE 3. RESTORATION USING THE FUNCTIONS sin x
x

Ff orm of Cor-
2 5 10 20 relation Function

10 1 27 Y 2.0 10.6 (5,3 5 q ,2
20 11/3 12- 10.1 8,31 591 9.1 2

50 17'5 12.9 0.6 8.6 5.92 122

/00 1f7 5 12.96 /0 65 85 5. 93 '/, 23

10 /62 8.7 527 2.1/8 .08 0.5

20 16.5 8.78 552 2/2 ,98 6139

50 16.35 8.8 5.65 2.,/2 0.96 0.35

00 /6.56 8.8 5.53 2.112 0.96 0.1

5 15,876,95 3. 1.f536 0.87 -

/0 1602 7,3 S3. / 1 . IO. 0 /2 -

20 161 728 13,/2 1.1 0.28 -

10. 1.5.1 3.06 0.59 0,3 0 .M38 0.37

20 515 3.5 0. 0.19 180.63186 q k

so lrs,2 as 44o.so oo

/00 I25 3.67 4 d g 0.'63 0 0038 07

• .j

f0 237 012 0./ 038 037 037

20 1.67O,21 0.2 0190f80 1860

50 f. 05 0, S 0, 08 o,o8 0 0 O, o

00 078 00'12 0O0/ 0036 0. 0.I 0, 03?
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of nodes (M o o f 2N).

Fig. i. Errors in piecewise-linear restora- 30 ;0 jo 1/0o v.,.,
tion (PL). 1. RC filter; 2. 2 x RC filter
5. linear sian f. Fig. 2. Errors in restoration using the

functions sin x with change in the number

of nodes (M E 2N).
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Fig. 3. Errors in restoration using the Fig. 4. Comparison of restoration methods.
functions sin x , N = 20. I. RC filter; i, 3, 4. Gaussian filter; 2, 5, 6. square-

2. 2 x RC filter; 3. 3 x RC filter; wave filter; 3, 5. N = 10, N - 4.
4. gaussian filter; 5. square-wave filter. 6. N = 20.
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Fig. 5. Comparison of restoration methods. Fig. 6. Comparison with optimal linear
1. RC filter; 2. 2 x RC filter; 3. 3 x RC restoration (MLR).
filter, N = 10. 1. RC filter; 2. 3 x RC filter; 3. gaussian

filter.
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